SpaceTimeCovMatEst(X); Rhat = SpaceTimeCovMatEst(X,MaxLag) estimates the space-time covariance matrix over the lag range (-MagLag ... +MaxLag) based on L snapshots of M-array data. The estimate Rhat is unbias and has a variance as described in [1]. Input parameters X MxL data matrix MaxLag described desired lag range of Rhat Output parameter Rhat estimated space-time covariance matrix Reference: [1] C. Delaosa, J. Pestana, and S. Weiss: "..." ICASSP'19.
0001 function Rhat = SpaceTimeCovMatEst(X,MaxLag); 0002 %SpaceTimeCovMatEst(X); 0003 % 0004 % Rhat = SpaceTimeCovMatEst(X,MaxLag) estimates the space-time covariance 0005 % matrix over the lag range (-MagLag ... +MaxLag) based on L snapshots of 0006 % M-array data. The estimate Rhat is unbias and has a variance as described 0007 % in [1]. 0008 % 0009 % Input parameters 0010 % X MxL data matrix 0011 % MaxLag described desired lag range of Rhat 0012 % 0013 % Output parameter 0014 % Rhat estimated space-time covariance matrix 0015 % 0016 % Reference: 0017 % 0018 % [1] C. Delaosa, J. Pestana, and S. Weiss: "..." ICASSP'19. 0019 0020 % S. Weiss, UoS, 14/10/18 0021 0022 %------------------------------------------------------------------------------ 0023 % parameters 0024 %------------------------------------------------------------------------------ 0025 [M,L] = size(X); 0026 Rhat = zeros(M,M,2*MaxLag+1); 0027 0028 %------------------------------------------------------------------------------ 0029 % evaluation 0030 %------------------------------------------------------------------------------ 0031 Rhat(:,:,MaxLag+1) = X*X'/L; 0032 for tau = 1:MaxLag, 0033 Rhat(:,:,MaxLag+1+tau) = X(:,1+tau:L)*X(:,1:L-tau)'./(L-tau); 0034 Rhat(:,:,MaxLag+1-tau) = Rhat(:,:,MaxLag+1+tau)'; 0035 end; 0036