R0 = ParaHermFourierCoeff(R,f0); Given a MxMxL parahermitian matrix in the time domain, this function evaluates the Fourier coefficient matrix at normalised frequency f0. The normalisation is such that f0 = 0 is DC, and f0 = 1 the sampling rate. Input parameters: R MxMxL parahermitian matrix in the time/coefficient domain f0 normalised frequenc [0...1] Output parameter: R0 MxM Fourier coefficient matrix at norm. freq. f0
0001 function R0 = ParaHermFourierCoeff(R,f0); 0002 % R0 = ParaHermFourierCoeff(R,f0); 0003 % 0004 % Given a MxMxL parahermitian matrix in the time domain, this function 0005 % evaluates the Fourier coefficient matrix at normalised frequency f0. 0006 % The normalisation is such that f0 = 0 is DC, and f0 = 1 the sampling 0007 % rate. 0008 % 0009 % Input parameters: 0010 % R MxMxL parahermitian matrix in the time/coefficient domain 0011 % f0 normalised frequenc [0...1] 0012 % 0013 % Output parameter: 0014 % R0 MxM Fourier coefficient matrix at norm. freq. f0 0015 0016 % S. Weiss, 18/4/2021 0017 0018 % parameters 0019 [M,~,L] = size(R); 0020 Maxtau = (L-1)/2; 0021 0022 % Fourier coefficient 0023 R0 = zeros(M,M); 0024 for m = 1:M, 0025 for mu = 1:(m-1), 0026 R0(mu,m) = squeeze(R(mu,m,:)).'*exp(-sqrt(-1)*2*pi*f0*(-Maxtau:Maxtau)'); 0027 end; 0028 R0(m,m) = .5*squeeze(R(m,m,:)).'*exp(-sqrt(-1)*2*pi*f0*(-Maxtau:Maxtau)'); 0029 end; 0030 R0 = R0+R0'; 0031