H = ParaHerm(G) Returns the parahermitian (i.e. the complex conjugate transpose, time reversed matrix) of the MIMO system matrix G. If G represents a polynomial matrix G(z) of order L with G(z) = G0 + G1 z^{-1} + G2 z^{-2} + ... + GL z^{-L} then G(:,:,1) = G0; G(:,:,2) = G1; G(:,:,3) = G2; ... G(:,:,L) = GL; The parahermitian H(z) = G~(z) is given by H(:,:,1) = GL'; ... H(:,:,L-1) = G1'; H(:,:,L) = G0'; Note that (.)' is the Hermitian transpose operator. Input parameter: H K x N x L MIMO system matrix Output parameter: G N x K x L MIMO system matrix
0001 function H = ParaHerm(G); 0002 %H = ParaHerm(G) 0003 % 0004 % Returns the parahermitian (i.e. the complex conjugate transpose, time 0005 % reversed matrix) of the MIMO system matrix G. 0006 % 0007 % If G represents a polynomial matrix G(z) of order L with 0008 % G(z) = G0 + G1 z^{-1} + G2 z^{-2} + ... + GL z^{-L} 0009 % then 0010 % G(:,:,1) = G0; 0011 % G(:,:,2) = G1; 0012 % G(:,:,3) = G2; 0013 % ... 0014 % G(:,:,L) = GL; 0015 % The parahermitian H(z) = G~(z) is given by 0016 % H(:,:,1) = GL'; 0017 % ... 0018 % H(:,:,L-1) = G1'; 0019 % H(:,:,L) = G0'; 0020 % Note that (.)' is the Hermitian transpose operator. 0021 % 0022 % Input parameter: 0023 % H K x N x L MIMO system matrix 0024 % 0025 % Output parameter: 0026 % G N x K x L MIMO system matrix 0027 0028 % S Weiss, Univ of Southampton, 15/7/2004 0029 0030 [M,N,L] = size(G); 0031 H = zeros(N,M,L); 0032 for m = 1:M, 0033 for n = 1:N, 0034 H(n,m,:) = conj(G(m,n,end:-1:1)); 0035 end; 0036 end; 0037