PolyMatAnalyticEigValues(R); [L,Perm,prec,xi2] = PolyMatAnalyticEigValues(R) returns the extracted analytic eigenvalues L of the polynomial matrix R [1,2] as described in [3]. The algorithm operated in discrete frequency bins and iterates until a defined bound for xi2 (see [3]) is reached, or the FFT length exceeds Nmax. Compared to a spectrally majorised ordering, the permutations of the eigenvalues in each frequency bin are returned in Perm. An approximate approximation error is returned in EVPrecision, which is a mix of truncation and time-domain aliasing. Input parameters R MxMxL parahermitian matrix Nmax maximum FFT length (optional; default 2^10) PrecLimit precision limit for iteration Output parameters L MxK matrix containing the extracted analytic eigenvalues in its rows Perm Permutations compared to the spectrally majorised solution prec time domain precision xi2 convergence/divergence metric References [1] S Weiss, J Pestana and IK Proulder: "On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix," IEEE Trans. on Signal Processing, 66(10):2659-2672, May 2018. [2] S Weiss, J Pestana, IK Proulder, and FK Coutts: "Corrections to `On the existence and uniqueness of the eigenvalue decomposition of a para- hermitian matrix'," IEEE Trans. on Signal Processing, 66(23):6325-6327, Dec. 2018. [3] S Weiss, IK Proulder, and FK Coutts: "Parahermitian matrix eigenvalue decomposition: extraction of analytic eigenvalues," IEEE Trans. on Signal Processing, 69:722-737, Jan. 2021
0001 function [L_analytic,L_permutation,EVPrecision,xi2] = PolyMatAnalyticEigValues(R,Nmax,PrecLimit); 0002 %PolyMatAnalyticEigValues(R); 0003 % [L,Perm,prec,xi2] = PolyMatAnalyticEigValues(R) returns the extracted analytic 0004 % eigenvalues L of the polynomial matrix R [1,2] as described in [3]. The algorithm 0005 % operated in discrete frequency bins and iterates until a defined bound for xi2 0006 % (see [3]) is reached, or the FFT length exceeds Nmax. Compared to a spectrally 0007 % majorised ordering, the permutations of the eigenvalues in each frequency bin 0008 % are returned in Perm. An approximate approximation error is returned in EVPrecision, 0009 % which is a mix of truncation and time-domain aliasing. 0010 % 0011 % Input parameters 0012 % R MxMxL parahermitian matrix 0013 % Nmax maximum FFT length (optional; default 2^10) 0014 % PrecLimit precision limit for iteration 0015 % 0016 % Output parameters 0017 % L MxK matrix containing the extracted analytic eigenvalues in 0018 % its rows 0019 % Perm Permutations compared to the spectrally majorised solution 0020 % prec time domain precision 0021 % xi2 convergence/divergence metric 0022 % 0023 % References 0024 % [1] S Weiss, J Pestana and IK Proulder: "On the existence and uniqueness of 0025 % the eigenvalue decomposition of a parahermitian matrix," IEEE Trans. on 0026 % Signal Processing, 66(10):2659-2672, May 2018. 0027 % [2] S Weiss, J Pestana, IK Proulder, and FK Coutts: "Corrections to `On the 0028 % existence and uniqueness of the eigenvalue decomposition of a para- 0029 % hermitian matrix'," IEEE Trans. on Signal Processing, 66(23):6325-6327, 0030 % Dec. 2018. 0031 % [3] S Weiss, IK Proulder, and FK Coutts: "Parahermitian matrix eigenvalue 0032 % decomposition: extraction of analytic eigenvalues," IEEE Trans. on 0033 % Signal Processing, 69:722-737, Jan. 2021