


PolyMatAnalyticEigValues(R);
[L,Perm,prec,xi2] = PolyMatAnalyticEigValues(R) returns the extracted analytic
eigenvalues L of the polynomial matrix R [1,2] as described in [3]. The algorithm
operated in discrete frequency bins and iterates until a defined bound for xi2
(see [3]) is reached, or the FFT length exceeds Nmax. Compared to a spectrally
majorised ordering, the permutations of the eigenvalues in each frequency bin
are returned in Perm. An approximate approximation error is returned in EVPrecision,
which is a mix of truncation and time-domain aliasing.
Input parameters
R MxMxL parahermitian matrix
Nmax maximum FFT length (optional; default 2^10)
PrecLimit precision limit for iteration
Output parameters
L MxK matrix containing the extracted analytic eigenvalues in
its rows
Perm Permutations compared to the spectrally majorised solution
prec time domain precision
xi2 convergence/divergence metric
References
[1] S Weiss, J Pestana and IK Proulder: "On the existence and uniqueness of
the eigenvalue decomposition of a parahermitian matrix," IEEE Trans. on
Signal Processing, 66(10):2659-2672, May 2018.
[2] S Weiss, J Pestana, IK Proulder, and FK Coutts: "Corrections to `On the
existence and uniqueness of the eigenvalue decomposition of a para-
hermitian matrix'," IEEE Trans. on Signal Processing, 66(23):6325-6327,
Dec. 2018.
[3] S Weiss, IK Proulder, and FK Coutts: "Parahermitian matrix eigenvalue
decomposition: extraction of analytic eigenvalues," IEEE Trans. on
Signal Processing, 69:722-737, Jan. 2021

0001 function [L_analytic,L_permutation,EVPrecision,xi2] = PolyMatAnalyticEigValues(R,Nmax,PrecLimit); 0002 %PolyMatAnalyticEigValues(R); 0003 % [L,Perm,prec,xi2] = PolyMatAnalyticEigValues(R) returns the extracted analytic 0004 % eigenvalues L of the polynomial matrix R [1,2] as described in [3]. The algorithm 0005 % operated in discrete frequency bins and iterates until a defined bound for xi2 0006 % (see [3]) is reached, or the FFT length exceeds Nmax. Compared to a spectrally 0007 % majorised ordering, the permutations of the eigenvalues in each frequency bin 0008 % are returned in Perm. An approximate approximation error is returned in EVPrecision, 0009 % which is a mix of truncation and time-domain aliasing. 0010 % 0011 % Input parameters 0012 % R MxMxL parahermitian matrix 0013 % Nmax maximum FFT length (optional; default 2^10) 0014 % PrecLimit precision limit for iteration 0015 % 0016 % Output parameters 0017 % L MxK matrix containing the extracted analytic eigenvalues in 0018 % its rows 0019 % Perm Permutations compared to the spectrally majorised solution 0020 % prec time domain precision 0021 % xi2 convergence/divergence metric 0022 % 0023 % References 0024 % [1] S Weiss, J Pestana and IK Proulder: "On the existence and uniqueness of 0025 % the eigenvalue decomposition of a parahermitian matrix," IEEE Trans. on 0026 % Signal Processing, 66(10):2659-2672, May 2018. 0027 % [2] S Weiss, J Pestana, IK Proulder, and FK Coutts: "Corrections to `On the 0028 % existence and uniqueness of the eigenvalue decomposition of a para- 0029 % hermitian matrix'," IEEE Trans. on Signal Processing, 66(23):6325-6327, 0030 % Dec. 2018. 0031 % [3] S Weiss, IK Proulder, and FK Coutts: "Parahermitian matrix eigenvalue 0032 % decomposition: extraction of analytic eigenvalues," IEEE Trans. on 0033 % Signal Processing, 69:722-737, Jan. 2021