PolyMatDiagSpec

PURPOSE ^

P = PolyMatDiagSpec(R,Ndft);

SYNOPSIS ^

function P = PolyMatDiagSpec(H,Ndft);

DESCRIPTION ^

P = PolyMatDiagSpec(R,Ndft);
 
   PolyMatDiagSpec(R) calculates the spectra on the main diagonal of a poly-
   nomial matrix R of dimension MxNxL, evaluated over L DFT bins. The 
   spectra are returned as the columns of an LxK matrix P, with K=min(M,N).

   PolyMatDiagSpec(R,Ndft) calculates the spectra using Ndft number of bins,
   whereby Ndft must be greater or equal L. The spectral are returned as 
   the columns of an (Ndft)xK matrix P.

   Input parameters:
      R       MxNxL polynomial matrix
      Ndft    number of DFT bins (options)
              default: L  

   Output parameter:
      P       Ndft x min(M,N) matrix of spectra

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function P = PolyMatDiagSpec(H,Ndft);
0002 %P = PolyMatDiagSpec(R,Ndft);
0003 %
0004 %   PolyMatDiagSpec(R) calculates the spectra on the main diagonal of a poly-
0005 %   nomial matrix R of dimension MxNxL, evaluated over L DFT bins. The
0006 %   spectra are returned as the columns of an LxK matrix P, with K=min(M,N).
0007 %
0008 %   PolyMatDiagSpec(R,Ndft) calculates the spectra using Ndft number of bins,
0009 %   whereby Ndft must be greater or equal L. The spectral are returned as
0010 %   the columns of an (Ndft)xK matrix P.
0011 %
0012 %   Input parameters:
0013 %      R       MxNxL polynomial matrix
0014 %      Ndft    number of DFT bins (options)
0015 %              default: L
0016 %
0017 %   Output parameter:
0018 %      P       Ndft x min(M,N) matrix of spectra
0019 
0020 % S. Weiss, 20/10/2005
0021   
0022 [M,N,L] = size(H);  
0023   
0024 if nargin==1,
0025    Ndft = L;
0026 end;
0027 if Ndft<L,
0028    warning('parameter Ndft in function MIMODiagSpec() is too small');
0029 end;
0030 
0031 MN = min(M,N);
0032 P = zeros(Ndft,MN);
0033 for i = 1:MN,
0034    P(:,i) = fft(shiftdim(H(i,i,:),2),Ndft);
0035 end;
0036

Generated on Wed 03-Dec-2014 19:38:11 by m2html © 2005